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Approximate simulation of stratospheric �ow
from aircraft data
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SUMMARY

We show how stratospheric data collected by an aircraft along its �ight path can be used to initialize
steady state approximate simulations of the stratospheric �ow. To this end we reformulate the initial
value problem for Boussinesq equations as a large system of sti� ordinary di�erential equations (using
the method of lines). Initial conditions for this system are derived from the aircraft data. As a result we
are able to compute the Brunt–Vaisala frequency, Richardson number and the vorticity in the vicinity
of the �ight path. Copyright ? 2003 John Wiley & Sons, Ltd.

1. INTRODUCTION

Several scienti�c missions were undertaken in the last two decades to collect data about the
atmospheric �ow (and trace gases) in the stratosphere or the upper troposphere [1–3]. This
data is important from a fundamental scienti�c point of view (e.g. the understanding of natural
turbulence phenomena [4–7]) as well as a practical point of view (e.g. the determination of
atmospheric structure constants [8, 9]).
In the past this data was collected by high �ying airplanes equipped with one meteorological

probe. This probe sampled the basic �ow variables (viz. velocity, pressure, temperature and
trace gas concentrations) along the �ight path. However it was impossible to use this data
to compute several important characteristics of the �ow such as the Brunt–Vaisala frequency,
the Richardson number or to initiate simulations of the �ow in the vicinity of the �ight path
(to determine the vorticity �eld and the large scale structure of the �ow).
In an attempt to overcome some of these di�culties a special purpose airplane was equipped

with three probes (on the wings and tail) to collect data about the atmospheric �ow at
heights of about 10 km [3]. (This plane was named ‘EGRETT’.) The new data collected
by this ‘platform’ enabled us to compute the �ow gradients along the �ight path. How-
ever it does not provide the data needed to compute the initial and boundary conditions to
initiate 3-D simulations of the �ow. In fact we do not have at the present (nor in the fore-
seeable future) the technological means to collect the data needed for such high resolution
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simulations. It is the objective of this paper to show however that this data can be used to
initiate an ‘approximate’ simulation of the atmospheric �ow around the plane �ight path (up
to a distance of a few hundred metres). This will enable us to compute at least an esti-
mate of the quantities that were impossible to calculate using the data collected by previous
expeditions.
To achieve these objectives we introduce an approximate model for the atmospheric �ow

under consideration. With these approximations we are able to simulate two dimensional
cross-sections of the �ow by using the steady state Boussinesq equations [10, 11]. We then
demonstrate that this system of partial di�erential equations (PDES) can be reformulated
as a large sti� system of ordinary di�erential equations (ODES) using the method of lines
[12, 13]. Initial data for the solution of this system of ODES can be extracted from the
data collected along the �ight path coupled with appropriate data decomposition technique
(to extract the mean �ow from the waves and the turbulence �uctuations). The ensuing
simulations for the atmospheric �ow (in the vicinity of the plane �ight path) enable us
to obtain insights about its nature, its large scale structure and the ‘numbers’ that charac-
terize it.
We wish to note at this juncture that the method of lines has been used in many applications.

However we believe that its application to the steady state Boussinesq equations which are
being reformulated so that one of the spatial co-ordinates is used as ‘time’ (as is being done
in this paper) did not appear in the literature before. Also we want to emphasize again that
the simulations and the results reported in this paper are only approximate and should be
viewed within this framework. It is hoped however that the methodology used in this context
will be found to be useful in other situations where there is not enough data to initiate a full
simulation of the governing equations.
The plan of the paper is as follows. In Section 2 we enumerate and discuss the approx-

imations that we have to impose in order to derive model equations that can be simulated
using the �ight data. In Section 3 we reformulate these equations as a large system of ODEs
using the method of lines. Section 4 describes the methodology used to extract the initial data
necessary for the simulation from the �ight data. Finally in Section 5 we present and discuss
the simulation results and end with some conclusions in Section 6.

2. APPROXIMATE MODEL FOR THE FLOW

In this paper we shall use the data collected by the Egrett on 6 August 1999 over Australia.
The meteorological data was sampled at constant time frequency of about 55:1 Hz (0:017 s).
The airplane speed was about 100 m=s and during the �ight segment under consideration the
plane was �ying in a straight line (which we take as the x-axis) at a constant height of about
9600 m with no clouds in the �ight path. The �ight time interval during which the data was
collected was about 12 hour.
Using this input it follows that an appropriate model equations that govern the �ow for

short distances from the plane are given by the time dependent 3-D Boussinesq equations
[4, 5]. In non-dimensional form these equations are

∇ · u=0 (1)
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@u
@t
+ (u · ∇)u=−∇p+ 1

Re
∇2u+

1
Fr
�k (2)

@�
@t
+ (u · ∇)�= 1

RePr
∇2� (3)

Here u=(u; v; w) is the �ow velocity, p is the pressure, � the potential temperature and
Re; Fr; Pr are the Reynold’s, Froude’s and Prandtl’s numbers, respectively.
It is easy to see however that the data collected by the aircraft is not su�cient to initiate a

3-D simulation of these equations. We must introduce therefore some simplifying approxi-
mations under which the available data is su�cient to provide us with the necessary initial
conditions. To this end we shall restrict ourselves to two-dimensional simulations of the �ow
either in the x–y (horizontal) plane or the x–z (vertical) plane and introduce the following
assumptions:

A. The time duration of the measurements is short compared to other (time dependent)
processes taking place. Accordingly we assume that for this duration the �ow is in a
quasi-time independent state. Consequently we make the approximation that the mea-
surements are taken simultaneously and use the steady state Boussinesq equations in our
simulations.
To justify this approximation we invoke Taylor (frozen wave) hypothesis which is com-
monly used in the analysis of meteorological time series [10]. According to this hypoth-
esis we can treat the data collected along the �ight path as equivalent to one collected
at one space point at di�erent times. It follows then that we can use these time series to
compute the (time) rate of change of the wind W (or its components). Using standard
estimation techniques we �nd that 〈@W=@t〉 ∼=2× 10−3m=s2. Since the time interval for
the measurements is ≈ 2000 s we estimate the temporal change in W during this time
interval to be ≈ 4 m=s or (since 〈W 〉 ∼=81 m=s) a relative change of 5%.

B. It is well known from other studies that the stratospheric �ow is almost two dimensional.
This is con�rmed by our data where we have |w|�|u|; |v|; |@w=@x|�1; |@w=@y|�1. Hence
the third momentum equation (Equation (2) in the z-direction) decouples approximately
from the other two momentum equations and we can simulate the remaining equations
in the x–y plane by treating u; v; � as functions of x–y only.

C. The stratospheric �ow in the vertical x–z plane is (for very short distances along y)
independent of y. This is supported by the fact that the wind gradients along y are
small compared to those along x. Consequently we can simulate this �ow approximately
by using 2-D Boussinesq equations.

Among these approximations the last is the most controversial. In fact it is conceptually
in con�ict with assumption B (where we let v= v(x; y)). It should be viewed then as a
0-approximation which enables us to simulate the �ow in the x–z plane. We observe however,
that to some extent, this assumption is supported a posteriori by the results of the simulations
in the x–y plane.

3. REFORMULATION OF THE PROBLEM

In this section we reformulate the steady state 2-D Boussinesq equations (for �ows
in the x–y, x–z planes) as an initial value problem for a (large and sti�) system of
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ODEs. As these two �ows have somewhat di�erent characteristics we consider them
separately.

3.1. The �ow in the x–y plane

Under the assumptions made earlier the equations that govern this �ow are

@u
@x
+
@v
@y
=0 (4)

u
@u
@x
+ v
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=−@p
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+
1
Re
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1
RePr
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We see then that Equation (7) is decoupled from Equations (4)–(6) and can be solved
separately. We can also replace Equation (4) by the pressure equation

∇2p=2
(
@u
@x
@v
@y

− @u
@y
@v
@x

)
(8)

At this point we note that if one derives the equivalent of Equation (8) in three dimensions
additional terms on the right hand side of this equation will have to be included. The most
important of these is (1=Fr)(@�=@z) which contributes to the stability of the stratosphere. To
gauge the variability of this term (in the x–y plane) we used the meteorological data which
was collected (during the plane climb) before and after the measurements were made and
obtained the following estimates:

@�
@z
(x=0)∼=−4:29× 10−3 degrees=m

@�
@z
(x=L)∼=−3:27× 10−3 degrees=m

(where L is the length of the �ight path ∼ 200km). Thus @�=@z is almost constant in the x–y
plane and it can be included in Equation (8) as an additional constant term.
Our objective is to simulate Equations (5), (6), (8) on a rectangle [0; a]× [0; b] given that

the atmospheric data is sampled at equispaced points xj on [0; a]; j=1; : : : ; n.
To this end we introduce

w=(w1; : : : ; w6)=
(
u; v; p;

@u
@y
;
@v
@y
;
@p
@y

)
(9)
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and rewrite Equations (5), (6), (8) as a system.
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(12)

or for brevity

@w
@y
=F

(
x; y;w;

@w
@x

)
(13)

We can convert this to a system of coupled ODEs using the method of lines. In this technique
we require the solution of the system only at the points x= xj and use �nite di�erences to
approximate the partial derivatives of w with respect to x viz.

dw
dy
(xj; y)= F̃(xj; y;w(xj; y)) (14)

We can solve this system for y�[0; b] if we can provide the proper initial conditions on w
(This problem will be addressed in the next section).

3.2. The �ow in x–z plane

Following the same approach as above we take the equations that govern this �ow as
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(All equations are coupled in this case). Introducing

�=(�1; : : : ; �8)=
(
u; w; p; �;
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)
(19)
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we can rewrite Equations (15)–(18) in the form:

@�
@z
=G

(
x; z; �; @�

@x

)
(20)

Once again we can convert this to a system of ODEs by the method of lines by using �nite
di�erences to approximate the derivatives of � in G;

d�(xj; z)
dz

= G̃(xj; z; �(xj; z)) (21)

4. INITIAL AND BOUNDARY CONDITIONS

To simulate Equations (14), (21) we must supply initial conditions at y=0 for w and z=0
for ^. These initial conditions require the extraction of the mean �ow from the data and the
computation of the appropriate derivatives of the primitive variables.
To extract the mean �ow we detrended the data using the Karahunan–Loeve algorithm

[15, 16] (see Appendix A). As a result the original data has been decomposed into mean �ow,
waves and turbulent residuals. These are denoted by subscript w and primes, respectively).

u= �u+ uw + u′; �= ��+ �w + �′; p= �p+ pw + p′ (22)

Using this data decomposition we can compute the components of the averaged Reynold’s
stress tensor and use the Boussinesq–Kolmogorov postulate

��ik =
1
3
K�ij − �T

(
@ �ui
@xk

+
@ �uk
@xi

)
(23)

K = ��ii= ��11 + ��22 + ��33 (24)

to obtain a value for the turbulent eddy viscosity �T

�T =
1
3K − ��11
2(@ �u=@x)

(25)

In the simulation we replaced � by

�e� = �+ �T

To compute the derivatives (at each moment at the plane center) along the x-axis we used
the fact that for a general function f

f̂′=
1
i!
f̂ (26)

where f̂ is the FFT transform of f. Thus to compute f′(x) we divide each term of f̂ by the
appropriate frequency ! and then use the inverse FFT of the new series to evaluate f′(x).
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The derivatives along y and z can be computed using �nite di�erences. For example one
can use the central di�erence formula

f′(0; t)= (fr(t)− fl(t))=d (27)

where f′(0; t) is the derivative at the centre of the plane at time t; d is the distance between
the probes and fr ; fl are the values of the variable f at the right and left probes, respectively.
However it is possible also to compute this derivative by using the data collected at times

t ± �t. Using directional derivatives we obtain after some algebra the following 6-point
approximation for

@f
@y
(0; t) =

1
2

{
fr(0; t)− fl(0; t)

d
+

1
4�x

[fr(�x; t +�t)− fr(−�x; t�t) (28)

+ fl(�x; t +�t)− fl(−�x; t −�t)]
}

(29)

As we pointed out earlier the ‘Egrett’ was equipped (for the �ight under consideration) with a
probe on each wing and one probe on the tail. The probe on the tail was mounted at a di�erent
height than the other two probes. Hence the measurements made by this probe combined with
those on the wing enable us to compute the vertical derivatives of the meteorological variables.
As a check for consistency @w=@z was computed directly and by the use of the continuity
equation.
Besides the initial conditions we need to impose appropriate boundary conditions on all

variables at x=0; L for the simulations in the x–y and x–z planes. Since we have no actual
data to accomplish this we imposed zero normal derivatives on all variables at these points.
This is justi�ed by the fact that the measured (averaged) gradients of all variables along the
�ight path are very small.
Finally it is not computationally feasible to use all the grid points that correspond to the

original time series (approximately 100 K points) in the simulation. To reduce this number
we averaged the data values over each interval of 8 data points to obtain a x-grid of 13355
points with equal spacing of 11:8 m.

5. RESULTS

To perform the simulations discussed in the previous sections we used the ‘method of lines’
package that was provided to us by Schiesser [12, 13] and the LSODE [14] package from
the NETLIB library [17]. In addition for comparison and veri�cation purposes we used the
PDECOL package from NETLIB.
The mean �ow which is needed to initiate the simulations was obtained from the Karahunen–

Loeve decomposition of the data collected in one �ight segment by the EGRETT along the
�ight path on 6 August 1999 at height of about 9600 m. A sample of this initial data (for
u) is shown in Figure 1. From this �gure it is clear that the mean �ow contains some small
oscillations. This leads to a sti� system of ODEs which require careful integration by an
implicit algorithm and small (variable) step size.
Plates 1 and 2 are contour plots of the speed and pressure in the x–z plane which were

obtained from the simulation. They show the vortical structure of the wind and the pressure
waves that accompany them. Plate 3 shows that the vorticity �eld is made of thin intermittent
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Figure 1. Plot of U mean �ow along the �ight path.

vertical structures. According to current conceptions [4, 7, 9] these vortical structures decay
in time to form thin �at layers of turbulence. We infer then that the plane was transversing
an area of strong turbulence. (This fact is corroborated by a spectral analysis of the data.)
Plate 4 which is a contour plot of v in the x–y plane demonstrates that assumption C in
Section 2 (that v is weakly dependent on y) is justi�ed.
Plate 5 is a contour plot of the Richardson number. It shows that this number varied along

the airplane path form positive to negative. This implies that while the �ow was stable in
some regions of the �ight it was unstable in other parts. It will be inappropriate, therefore,
to characterize the state of the �ow by some averaged value of this number (as is usually
done). Figures 2 and 3 show actual cross sections (as a function of height) of the Richardson
number at two di�erent values of x along the �ight path.
Similarly Figure 4 is a plot of the Brunt–Vaisala frequency along the �ight path at 30 m

height above the plane. It shows the variability of this frequency along the �ight path.
Figures 5 and 6 are cross sections (as a function of height) at two di�erent values of x.
These plots demonstrate the variable e�ects of the strati�cation on the �ow at di�erent points
along the �ight path.
The simulations carried in this paper are approximate. Accordingly it is important to gauge

the impact of the di�erent error types on the results. These errors include data noise, numerical
integration errors and errors due to the approximations introduced in Section 2.
Based on instrument speci�cations the data noise should be at a relative error level of 10−3.

This is con�rmed by the eigenvalues obtained in the Karahunan–Loeve decomposition where
the last few eigenvalues (which re�ect the noise level in the data) are of order 10−3 of the
leading eigenvalue (see Figure 7).
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Figure 2. Plot of the Richardson number as a function of the height at �ight distance of 18 km.
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Figure 3. Plot of the Richardson number as a function of the height at �ight distance of 85 km.
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Figure 4. Plot of Brunt–Vaisala frequency (N 2) as a function of the �ight distance
at 30 m height above the plane.
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Figure 5. Plot of Brunt–Vaisala frequency (N 2) as a function of the height at �ight distance of 35 km.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:209–223



Plate 1. Contour plot of the speed as a function of the �ight distance and
height (simulation in the x–z plane).

Plate 2. Contour plot of the pressure as a function of the �ight distance
and height (simulation in the x–z plane).
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Plate 3. Contour plot of the vorticity as a function of the �ight distance
and height (simulation in the x–z plane).

Plate 4. Contour plot of the temperature as a function of the �ight and
lateral distance (simulation in the x–y plane).
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Plate 5. Contour plot of the Richardson number as a function of the �ight distance
and height (simulation in the x–z plane).
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Figure 6. Plot of Brunt–Vaisala frequency (N 2) as a function of the height at �ight distance of 60 km.

Figure 7. Karahunan–Loeve eigenvalue spectrum for u.

During the numerical integration the relative error in each step was set to 10−8 (�oating
point computations used 128 bit precision) with automatic-variable time step to satisfy this
constraint.
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Thus these two sources of error have a lesser impact on the solution than the errors which
are due to the approximations made in order to be able to perform the two-dimensional cross
section simulations. An estimation of the orders of the terms that were neglected leads to an
error estimate in the range of 10–15% in the results.

6. CONCLUSIONS

The micro-structure of the �ow (i.e. with resolutions of about 10m) in the upper troposphere
or the stratosphere cannot be obtained from numerical weather simulations where the grid
spacing is of the order of 10 km. On the other hand initial data and boundary conditions for
3-D simulations of this �ow in these resolutions are impossible to obtain by present means.
The methodology presented in this paper (in spite of its obvious shortcomings) is perhaps the
best one can devise to obtain at least some partial insight about this �ow.
Using these cross-sectional simulations we have been able to obtain an estimate for the

Richardson number and Brunt–Vaisala frequency along the airplane path (and as a function
of the height from the plane). These results combined with spectral analysis can uncover
important characteristics of the �ow which are needed in many practical applications [8, 9].

APPENDIX A: K–L DECOMPOSITION

The statistical approach to turbulence splits the �ow variables into a sum of mean �ow, waves
and turbulent residuals (see Equation (4.1)). To e�ect such a decomposition in our data we
used the Karahunan–Loeve (K–L) decomposition algorithm (or PCA) which was used by
many researchers (for a review see Reference [16]). Here we shall give only a brief overview
of this algorithm within our context.
Let be given a time series X (of length N ) of some geophysical variable. We �rst determine

a time delay � for which the points in the series are decorrelated. Using � we create n copies
of the original series

X (k); X (d+�); : : : ; X (k + (n− 1)�)
(To create these one uses either periodicity or choose to consider shorter time-series). Then
one computes the auto-covariance matrix R=(Rij)

Rij=
N∑
k=1
X (k + i�)X (k + j�) (A1)

Let �0¿�1; : : : ;¿�n−1 be the eigenvalues of R with their corresponding eigenvectors

�i=(�i0; : : : ; �
i
n−1); i=0; : : : ; n− 1

The original time series T can be reconstructed then as

X ( j)=
n−1∑
k=0
ak( j)�k0 (A2)
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Figure A1. The phase between the detrended turbulent residuals of v and �.

where

ak( j)=
1
n

n−1∑
i=0
X ( j + i�)�ki (A3)

The essence of the K–L decomposition is based on the recognition that if a large spectral gap
exists after the �rst m1 eigenvalues of R then one can reconstruct the mean �ow (or the large
component (of the data by using only the �rst m1 eigenfunctions in (A2). A recent re�nement
of this procedure due to Ghil et al. [16] is that the data corresponding to eigenvalues between
m1 + 1 and up to the point m2 where they start to form a ‘continuum’ represent waves. The
location of m2 can be ascertained further by applying the tests devised by Axford [5] and
Dewan [4] (see below).
Thus the original data can be decomposed into mean �ow, waves and residuals (i.e. data

corresponding to eigenvalues m2 + 1; : : : ; n − 1 which we wish to interpret at least partly as
turbulent residuals).
For the data under consideration we carried out this decomposition using a delay � of

1024 points for all the geophysical variables (a distance of about 1600 m). This delay was
based on the Kennel’s et al. mutual information test [18] and an estimate of 700–1000m for
the integral scale of the �ow from the spectral plots (see Reference [10, pp. 174–176]).
The residuals of the time series which are reconstructed as

X r( j)=
n−1∑

k=m2+1
ak( j)�k0 (A4)

contain (obviously) the measurement errors in the data. However to ascertain that they should
be interpreted primarily as representing turbulence we utilize the tests devised by Axford [5]
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Figure A2. The coherence between the detrended turbulent residuals of w and �.

and Dewan [4]. According to these tests turbulence data (at the same location) is characterized
by low coherence between u; v; w and a phase close to zero or 	 between w and �. (A phase
close to 	=2 is characteristic of waves).
These tests show that to a large extent the residuals that were obtained from the K–L

decomposition represent actual turbulence. (Samples of the K–L decomposition spectrum, the
coherence and phase are given in Figures 7, A1 and A2).
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